Yolo人脸检测

本节例程的位置在 百度云盘资料\野火K210 AI视觉相机\1-教程文档_例程源码\例程\10-KPU\yolo_face_detect\yolo_face_detect.py

介绍

人脸检测,可以通过摄像头来识别图像中是否有人,可用于安防领域,下图为实机演示

野火logo

例程

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import sensor, image, time, lcd

from maix import KPU
import gc

lcd.init()
sensor.reset(dual_buff=True)                      # Reset and initialize the sensor. It will
                                    # run automatically, call sensor.run(0) to stop
sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA)   # Set frame size to QVGA (320x240)
sensor.skip_frames(time = 1000)     # Wait for settings take effect.
clock = time.clock()                # Create a clock object to track the FPS.

od_img = image.Image(size=(320,256))

anchor = (0.893, 1.463, 0.245, 0.389, 1.55, 2.58, 0.375, 0.594, 3.099, 5.038, 0.057, 0.090, 0.567, 0.904, 0.101, 0.160, 0.159, 0.255)
kpu = KPU()
kpu.load_kmodel("/sd/KPU/yolo_face_detect/yolo_face_detect.kmodel")
kpu.init_yolo2(anchor, anchor_num=9, img_w=320, img_h=240, net_w=320 , net_h=256 ,layer_w=10 ,layer_h=8, threshold=0.7, nms_value=0.3, classes=1)

while True:
    #print("mem free:",gc.mem_free())
    clock.tick()                    # Update the FPS clock.
    img = sensor.snapshot()
    a = od_img.draw_image(img, 0,0)
    od_img.pix_to_ai()
    kpu.run_with_output(od_img)
    dect = kpu.regionlayer_yolo2()
    fps = clock.fps()
    if len(dect) > 0:
        print("dect:",dect)
        for l in dect :
            a = img.draw_rectangle(l[0],l[1],l[2],l[3], color=(0, 255, 0))

    a = img.draw_string(0, 0, "%2.1ffps" %(fps), color=(0, 60, 128), scale=2.0)
    lcd.display(img)
    gc.collect()

kpu.deinit()

例程解析

1
2
3
4
import sensor, image, time, lcd

from maix import KPU
import gc
  • 这些库提供了对摄像头、图像处理、时间、LCD显示和内存管理等的支持。

1
2
3
4
5
6
7
lcd.init()
sensor.reset(dual_buff=True)                      # Reset and initialize the sensor. It will
                                    # run automatically, call sensor.run(0) to stop
sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA)   # Set frame size to QVGA (320x240)
sensor.skip_frames(time = 1000)     # Wait for settings take effect.
clock = time.clock()                # Create a clock object to track the FPS.
  • 初始化LCD显示和摄像头设置,包括双缓冲、像素格式、帧大小,并跳过一些帧以确保设置生效。同时创建一个时钟对象来跟踪帧率(FPS)。

1
2
3
4
5
6
od_img = image.Image(size=(320,256))

anchor = (0.893, 1.463, 0.245, 0.389, 1.55, 2.58, 0.375, 0.594, 3.099, 5.038, 0.057, 0.090, 0.567, 0.904, 0.101, 0.160, 0.159, 0.255)
kpu = KPU()
kpu.load_kmodel("/sd/KPU/yolo_face_detect/yolo_face_detect.kmodel")
kpu.init_yolo2(anchor, anchor_num=9, img_w=320, img_h=240, net_w=320 , net_h=256 ,layer_w=10 ,layer_h=8, threshold=0.7, nms_value=0.3, classes=1)
  • 创建一个用于神经网络输入的图像对象od_img,加载一个预训练的KPU模型用于人脸检测,并初始化YOLO v2神经网络。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
while True:
    #print("mem free:",gc.mem_free())
    clock.tick()                    # Update the FPS clock.
    img = sensor.snapshot()
    a = od_img.draw_image(img, 0,0)
    od_img.pix_to_ai()
    kpu.run_with_output(od_img)
    dect = kpu.regionlayer_yolo2()
    fps = clock.fps()
    if len(dect) > 0:
        print("dect:",dect)
        for l in dect :
            a = img.draw_rectangle(l[0],l[1],l[2],l[3], color=(0, 255, 0))

    a = img.draw_string(0, 0, "%2.1ffps" %(fps), color=(0, 60, 128), scale=2.0)
    lcd.display(img)
    gc.collect()
  • 捕获一帧图像。

  • 将捕获的图像绘制到od_img上,并转换为神经网络输入格式。

  • 运行KPU模型进行人脸检测。

  • 如果检测到人脸,则在原始图像上绘制矩形框。

  • 在图像上显示当前的FPS。

  • 将图像显示在LCD上。

  • 进行垃圾回收以释放内存。

1
kpu.deinit()
  • 在循环结束后,清理KPU资源。